
Journal of Management and Science ISSN: 2249-1260 | e-ISSN: 2250-1819  

 

 Page 1-7  

t 

 

 

Parametric regression model for response time in clinical trials – a bayesian 
approach 

 

DR. N. SUNDARAM 

ASSISTANT PROFESSOR, DEPARTMENT OF STATISTICS, PRESIDENCY COLLEGE 

(AUTONOMOUS), CHENNAI-600 005, TAMILNADU, INDIA. 
 
 

Abstract 

In this paper an attempt has been made to model the censored survival data using 

Bayesian regressions with Markov Chain Monte Carlo (MCMC) methods. Bayesian Log- 

Normal (LN) regression model are found to be providing better fit than the other Bayesian 

regression models namely Exponential (E), Generalized Exponential (GE), Webull (W), Log- 

Logistic (LL) and Gamma (G). 
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1. Introduction 

Models fitted to survival data may involve parametric or semi-parametric or non- 

parametric forms for the hazard function. This depends on whether this form is defined as 

that of a known model, or whether it is completely undefined. In the past three decades, a 

number of regression-type models have been suggested for the analysis (Prentice, 1973; 

Aitkin and Clayton, 1980). The regression models have been reviewed by Kay (1977) and are 

introduced at length in the book of Kalbfleisch and Prentice (1980) and Cox and Oakes 

(1984). 

 

Statistical modeling in Bayesian univariate parametric survival analysis and life 

testing is too large but some references dealing with applications to medical and industries 

were thus Box and Tiao (1973), Chen et al.(2000), Ibrahim et al. (2001) and Gelman et al. 

(2004). Kundu and Gupta (2008) studied only complete data set for Bayesian EE model. 

Venkatesan and Sundaram (2011) studied the two parameters GE models for censored 

survival data without covariates compared with Exponential, Weibull and Log-logistic 

models. This paper focused on, how the independent variable varies from different Bayesian 

regression models. 

. 

The section of the paper is arranged as follows. The basic concepts and notations are 

explained in section 2. In section 3, concept of Bayesian model presented. Real databases 

presented in section 4. Results and discussion of the performance of study models are 

presented in section 5. Summary and conclusion of study models are presented in section 6. 

 

2. Notations 

The actual survival time of an individual, t, can be regarded as the value of a variable 

T, which can take any non-negative value. The random variable T has the distribution 

function is given by 

F (t)  P(T   t)  0    
f (u)du, 

(1) 
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Density function: 

 

and survival function is defined by: 

 
(2) 

 

f (t)  dF(t) / dt. 

 
S (t)  P(T  t)  1  F (t) , 

The hazard function therefore represents the instantaneous death rate for an individual 

surviving up to time t is given by 
h(t)   P(t  T  t  t | T  t  f (t) . (3) 

 
 lim 

t 0 t 
  

S (t) 

It then follows that 

(4) 

and 

(5) 

Where 

(6) 

h(t)  
 dlog S (t)

,
 

dt 

 

S(t)  exp H (t), 

 
H (t)  0 

h(u)du. 

The most commonly used models are presented in table 1along with survival and hazards. 

Table 1Parametric survival models 

 

 

 

 
 

 

 

 

 

 
 

 
 

 

 

 
 

 

 

 

 

 
 

 
 

3 Bayesian model 

The frequently used models for survival analyses are the Cox, AFT, Frailty, Gamma 

frailty and Bayesian regression. Recently parametric models play an important role in 

Bayesian survival analysis, since many Bayesian analyses in practice are carried out using 

parametric models. Theoretically, Bayesian techniques offer simple alternatives to statistical 

inference and all inferences follow from the posterior model. 

Model 
s 

Density function Distribution function Survival 
function 

Hazard function 

E f  et ,t  0, λ>0 
E 

F  1  et 
E 

S  et 

E hE  

GE f  (1 et )1 et
 

GE 

t  0, α, λ >0 

F  (1 e
t 

)
GE 

S  1  (1  et )
GE 

(1  et ) 1 et 

hGE   
1  (1  et )

W f  (t)
 1 

e
(t )


W 

t  0, α, λ >0 

F  1 e(t )

W 
S  e(t )

W 

h  (t)
1

 
W 

LL t  1 

f 
LL   
  
1  t  2 

t  0, α, λ >0 

t 

FLL    0   
f LL (x)dx 

S  
1

 
LL 

1  t 
t  1 

hLL   
1  t 




G 
f  

      
(t) 

1 
e
t 

G  
( ) 

t, λ, α > 0 

F    
1 t 

u 
1

e
u 

du 
G 

( ) 0 

 I (t, ) 

SG  1  FG h  
fG

 
G 

S
 
G 

LN 1  
1 

(log t  )2
 

f    e 2 2
 

LN 
t 2

 
t,σ >0,µ≥0 

F  1  
 logt   

LN  
  

SLN  1  FLN 
h   f LN 

LL  
S
 
LN 
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In practice, we can obtain the posterior model with straightforward analytical solutions only 

in the most rudimentary problems. We presented posterior and predictive models and how to 

carry out Bayesian analysis for parametric regression models. For example, let t = (t1,…,tn)
‘ 

be the iid survival times each having a Weibull model denoted by W (α, γ) as defined by: 

 

f (t /  , )  t 
1

e
( et ) 

, 

(7) 

where λ = log(γ) and the above expression denoted by W( α, λ). The survival function of the 

Weibull model is S(t /  , )  e(e
 
t
  

)
 and then we can express likelihood function for the 

right censored survival data of W (α, λ) as: 
 

 

L( ,  / D)  f (ti 
i1 

i 

/  , ) S (ti /  , )(1i  ) 
. 

(8) 

Here the conjugate prior for eλ is a Gamma prior if α is assumed known. Both (α, λ) are 

assumed unknown if no joint conjugate prior is available. In this situation, α and λ to be 

independent of joint prior and their models Gamma and Normal respectively. We can write 

the joint posterior model for Gamma prior G(α0, k0) and Normal prior N(μ0, σ0
2) of (α, λ) 

(Ibrahim et al, 2001) is given by 

f ( ,  / D)  L( ,  / D) f ( /  0 , k0 ) f ( / 0 ,




2 
)  f (t 

i 1 

/  , ) i   S (t /  , )(1 i  ) 
. (9) 

The above joint posterior expression (20) of simplification does not have a closed form hence 

we can apply MCMC method. The regression model with covariate λi = Xi
’β can be written as 

follows. 
 

f ( , / D)  
0 d 1  

exp
 n   

(  x 
' 
    ( 1) log(t  )  t  e

xi 

'  
)  k    

1 
(  




)
1 (   )


 (10) 

 i    i i 

i1 

i i 0 
2

 0 0 0 


where d = sum of δi and β is the improper prior i.e., f(β)  1 and we assuming a Normal prior 

Np(μ0, Σ0) for β and a Gamma prior for α. The joint posterior expression (10) is a non-linear 

expression so we need to use numerical integration or MCMC. The Weibull Bayesian 

regression model is fitted by constructing the likelihood function of n observations and 
maximizing this function with respect to unknown parameters,  ,  ,...,  , and α. 

1 2 p 

Similarly, we also fitted to the other Bayesian regression models respectively Cox, 

Exponential, Generalized Exponential, Log-logistic, Gamma and Log-Normal. This is done 

using computer software programme for survival analysis and the results are presented in 

tables 2 and 3. 

 

4. Databases 

For empirical comparison of the different models, we have considered a randomized 

controlled clinical trial data on Tuberculosis (TB) (Tuberculosis Research Centre (TRC), 

2007). The aim of the study is to assess the response time to an 8 month treatment regimen 

consisting of Ethambutol, Rifampicin, Isoniazid and Pyrazinamide thrice weeks for first two 

months followed by Isoniazid and Ethambutol daily for next 6 months. The primary outcome 

variable is sputum culture conversion time. A total 467 patients were considered for this 

work. Out of these 90% had favourable response and 10% had not responded or lost which 

constitute the censored observations. Four important covariates were considered for model 

comparison namely age, sex, weight on admission and percentage of allocated doses received 

by each patient. 

n 

n 

0 i 
i 
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5. Results and Discussion 

In the Bayesian regression model, we used Normal prior for covariates (β) and 

Gamma prior for alpha (α) with 20000 and 40000 samples and obtain the posterior 

summaries of covariates. From table 3, we observed that the covariate dosage is significant 

for W, LL (at 40000 samples) and G (at 20000 and 40000 samples) Bayesian regression 

models but not significant for other covariates and only age is significant for GE Bayesian 

regression model (at 20000 and 40000 samples) but Bayesian GE regression model gave the 

smaller MC standard error. Bayesian LN regression model (at 20000 and 40000 samples) is 

better fit than the other parametric Bayesian regression models based on Deviance 

information criterion (DIC) (table 2) value and figures (a-f) shows the trace plots of the MC 

samples, autocorrelation and marginal posterior densities of covariates. We notice that the 

Bayesian LN regression model, the plots indicate that the MC samples are mixing well at 

40000 iterations. We observe that, the Bayesian LN regression model performs better than the 

other models (E, GE, W, LL and G). 

 

Table 2 Model selections for sputum culture conversion data 

Models Parameter/  
E 

 
EE 

 
W 

 
LL 

 
G 

 
LN Method 

Bayesian Scale/Mu 0.267 0.551 1.459 2.723 2.832 0.717 

Regression Shape/Sig - 2.943 0.271 0.072 1.374 0.534 
(MC Samples-  

DIC 
 

1834 
 

1667 
 

1745 
 

1597 
 

1615 
 

1338@ 20000) 

Bayesian Scale/Mu 0.267 0.550 1.459 2.719 2.869 0.716 

Regression Shape/Sig - 2.941 0.271 0.073 1.382 0.534 
(MC Samples  

DIC 
 

1834 
 

1667 
 

1745 
 

1597 
 

1615 
 

1338@ 40000) 

 

Table 3 Posterior Summaries of sputum culture conversion data under different Bayesian 

Regression Models 

 

Samples 20000 40000 

Bayesian E Regression  Model 

Mean 0.205 0.006 -0.065 -0.283 0.205 0.004 -0.064 -0.284 

SD 0.117 0.106 0.107 0.152 0.120 0.107 0.107 0.152 

MCSE 0.003 0.003 0.003 0.004 0.003 0.002 0.002 0.003 

25% 0.123 -0.064 -0.136 -0.384 0.123 -0.068 -0.136 -0.387 

50% 0.207 0.006 -0.064 -0.284 0.207 0.005 -0.065 -0.283 

75% 0.288 0.078 0.008 -0.181 0.289 0.078 0.009 -0.182 

Bayesian GE Regression Model 

Mean 0.060 0.006* -0.015 -0.068 0.060 0.006* -0.015 -0.069 

SD 0.027 0.024 0.022 0.033 0.026 0.024 0.022 0.033 

MCSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

25% 0.042 -0.009 -0.030 -0.090 0.042 -0.009 -0.030 -0.090 

50% 0.061 0.006 -0.015 -0.067 0.060 0.006 -0.015 -0.068 

75% 0.078 0.022 -0.001 -0.044 0.077 0.022 0.000 -0.046 
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Bayesian W Regression Model 

 

Mean 
0.196 -0.009 -0.042 - 

0.197*** 
0.196 -0.010 -0.042 -0.196 

SD 0.083 0.074 0.074 0.105 0.082 0.074 0.073 0.106 

MCSE 0.004 0.003 0.003 0.009 0.003 0.002 0.002 0.005 

25% 0.138 -0.060 -0.091 -0.268 0.139 -0.061 -0.092 -0.268 

50% 0.195 -0.009 -0.041 -0.197 0.196 -0.009 -0.041 -0.195 

75% 0.251 0.041 0.007 -0.128 0.253 0.040 0.008 -0.125 

Bayesian LL Regression Model 

Mean 0.386 0.158 -0.142 -0.610 0.378 0.164 -0.135 -0.596** 

SD 0.200 0.173 0.166 0.250 0.198 0.175 0.168 0.247 

MCSE 0.007 0.006 0.005 0.010 0.005 0.004 0.004 0.007 

25% 0.258 0.040 -0.249 -0.775 0.247 0.048 -0.245 -0.755 

50% 0.386 0.155 -0.141 -0.607 0.375 0.165 -0.133 -0.591 

75% 0.517 0.271 -0.027 -0.441 0.509 0.282 -0.022 -0.429 

Bayesian G Regression Model 

Mean 0.024 0.014 0.012 0.023*** 0.023 0.013 0.011 0.021** 

SD 0.025 0.022 0.022 0.030 0.025 0.021 0.021 0.029 

MCSE 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 

25% 0.006 -0.002 -0.003 0.001 0.006 -0.001 -0.003 0.001 

50% 0.024 0.014 0.012 0.022 0.024 0.013 0.011 0.021 

75% 0.041 0.029 0.026 0.044 0.041 0.028 0.025 0.041 

Bayesian LN Regression Model 

Mean -0.112 -0.074 0.003 0.058 -0.111 -0.074 0.000 0.057 

SD 0.094 0.079 0.072 0.104 0.093 0.078 0.072 0.103 

MCSE 0.003 0.002 0.003 0.004 0.002 0.002 0.002 0.002 

25% -0.175 -0.126 -0.045 -0.011 -0.172 -0.125 -0.048 -0.011 

50% -0.114 -0.074 0.002 0.063 -0.111 -0.075 0.000 0.062 

75% -0.050 -0.021 0.053 0.128 -0.049 -0.021 0.049 0.127 

* p < 0.05, ** p < 0.01, *** p < 0.001 and @ Better performance 
 

(a) Sigma (b) Beta0 
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(c) Beta1-Sex (d) Beta2-Age 

  

(e) Beta3-Weight (f) Beta4-Dosage 

Figure (a-f).Trace plots, Autocorrelations and Marginal posterior densities of Coefficients 

using Bayesian Log-Normal Regression Model after 40000 iterations for sputum culture 

conversion data. 

 

6. Summary and Conclusion 

In this paper we consider a special case of parametric regression models with unknown 

shape, scale and regression coefficients of life time for censored data. Using the maximum 

likelihood with computer software programme, the above said parameter has been estimated. We 

observed from the discussion of section 5, Bayesian LN regression model using MCMC techniques 

seem to be more appropriate for the study of our right censored tuberculosis sputum culture 

conversion data when compared to other models. Moreover, the covariate dosage is mostly 

significant for all the models. Overall LN model performs well in Bayesian survival models. The 

performance of GE, LL, G and LN models improves considerably in low censored situation. 

Further studies are needed to validate this conclusion under different censoring patterns. 
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